Gap-free compositions and gap-free samples of geometric random variables
نویسندگان
چکیده
منابع مشابه
Gap-free compositions and gap-free samples of geometric random variables
We study the asymptotic probability that a random composition of an integer n is gap-free, that is, that the sizes of parts in the composition form an interval. We show that this problem is closely related to the study of the probability that a sample of independent, identically distributed random variables with a geometric distribution is likewise gap-free.
متن کاملGap-Free Samples of Geometric Random Variables
We study the probability that a sample of independent, identically distributed random variables with a geometric distribution is gap-free, that is, that the sizes of the variables in the sample form an interval. We indicate that this problem is closely related to the asymptotic probability that a random composition of an integer n is likewise gap-free.
متن کاملCompositions and samples of geometric random variables with constrained multiplicities
We investigate the probability that a random composition (ordered partition) of the positive integer n has no parts occurring exactly j times, where j belongs to a specified finite ‘forbidden set’ A of multiplicities. This probability is also studied in the related case of samples Γ = (Γ1,Γ2, . . . ,Γn) of independent, identically distributed random variables with a geometric distribution. Résu...
متن کاملLimits Laws for Geometric Means of Free Random Variables
Let {Tk}k=1 be a family of ∗–free identically distributed operators in a finite von Neumann algebra. In this work we prove a multiplicative version of the free central limit Theorem. More precisely, let Bn = T ∗ 1 T ∗ 2 . . . T ∗ nTn . . . T2T1 then Bn is a positive operator and B 1/2n n converges in distribution to an operator Λ. We completely determine the probability distribution ν of Λ from...
متن کاملLimits Laws for Geometric Means of Free Positive Random Variables
Let {ak}k=1 be free identically distributed positive non–commuting random variables with probability measure distribution μ. In this paper we proved a multiplicative version of the Free Central Limit Theorem. More precisely, let bn = a 1/2 1 a 1/2 2 . . . an . . . a 1/2 2 a 1/2 1 then bn is a positive operator with the same moments as xn = a1a2 . . . an and b 1/2n n converges in distribution to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2005
ISSN: 0012-365X
DOI: 10.1016/j.disc.2005.02.008